A Note on Jensen Inequality for Self-adjoint Operators
نویسندگان
چکیده
In this paper we consider the order-like relation for self-adjoint operators on some Hilbert space. This relation is defined by using Jensen inequality. We will show that under some assumptions this relation is antisymmetric.
منابع مشابه
A note on $lambda$-Aluthge transforms of operators
Let $A=U|A|$ be the polar decomposition of an operator $A$ on a Hilbert space $mathscr{H}$ and $lambdain(0,1)$. The $lambda$-Aluthge transform of $A$ is defined by $tilde{A}_lambda:=|A|^lambda U|A|^{1-lambda}$. In this paper we show that emph{i}) when $mathscr{N}(|A|)=0$, $A$ is self-adjoint if and only if so is $tilde{A}_lambda$ for some $lambdaneq{1over2}$. Also $A$ is self adjoint if and onl...
متن کاملHigher Derivations Associated with the Cauchy-Jensen Type Mapping
Let H be an infinite--dimensional Hilbert space and K(H) be the set of all compact operators on H. We will adopt spectral theorem for compact self-adjoint operators, to investigate of higher derivation and higher Jordan derivation on K(H) associated with the following cauchy-Jencen type functional equation 2f(frac{T+S}{2}+R)=f(T)+f(S)+2f(R) for all T,S,Rin K(H).
متن کاملHigher Derivations Associated with the Cauchy-Jensen Type Mapping
Let H be an innite dimensional Hilbert space and K(H) be the set of all compactoperators on H. We will adopt spectral theorem for compact self-adjoint operators, to investigate ofhigher derivation and higher Jordan derivation on K(H) associated with the following Cauchy-Jensentype functional equation 2f((T + S)/2+ R) = f(T ) + f(S) + 2f(R) for all T, S, R are in K(...
متن کاملA . Jensen and M . Krishna : New Criteria to Identify Spectrum
In this paper we give some new criteria for identifying the components of a probability measure, in its Lebesgue decomposition. This enables us to give new criteria to identify spectral types of self adjoint operators on Hilbert spaces, especially those of interest.
متن کاملError bounds in approximating n-time differentiable functions of self-adjoint operators in Hilbert spaces via a Taylor's type expansion
On utilizing the spectral representation of selfadjoint operators in Hilbert spaces, some error bounds in approximating $n$-time differentiable functions of selfadjoint operators in Hilbert Spaces via a Taylor's type expansion are given.
متن کامل